Demonstration of a New, Multi-Function, Nondestructive Pavement Testing Device

Jung-Su Lee and Kenneth H. Stokoe, II Center for Transportation Research University of Texas at Austin

Thomas Scullion
Texas A&M Transportation Institute
Texas A&M University

Joe Leidy and Edward Oshinski
Texas Department of Transportation

2014 FAA Worldwide Airport Technology Transfer Conference August 07, 2014

Outline

- 1. Overview of Rolling Dynamic Deflectometer (RDD)
 - Emphasis of Presentation is Deflection
 Measurements
- 2. Present New Profiling Device
 - Called Total Pavement Acceptance Device (TPAD)
 - Multi-Function Device
- 3. TPAD Testing at TxDOT FSF in Austin
 - Jointed Concrete Pavement Testbed
 - RDD Deflection Profiles
- 4. Concluding Remarks

1. Overview:

Rolling Dynamic Deflectometer (RDD)

Electro-Hydraulic Loading System >

Diesel Engine: Powers Hydraulic Loading System

Rolling Sensors

Two Loading Rollers

Distance Encoder

- **Mobile platform**

 - moves continuously along pavement two loading rollers apply dynamic loads to pavement multiple rolling sensors measure resulting dynamic deflections

Cross Section of RDD

Continuous Deflection Profile

2. New Profiling Device

- Total Pavement Acceptance Device (TPAD)
 - Project-level studies
 - Continuous testing at 2 to 3 mph
 (Goal is to increase testing speed)
 - Multi-function device
- Testing Functions
 - RDD measurements
 - Ground penetrating radar (GPR)
 - Distance measurement along pavement (DMI)
 - High-precision differential GPS
 - Pavement surface temperature
 - Digital video imaging of pavement

TPAD Mobile Platform: Adapted from a Minivibe

Cross-Sectional View of Pavement Loading System Shown in Next Slide

Loading Roller

* Note: Much open space beneath frames.

Cross Section of TPAD Loading System

TPAD RDD Forcing Function

Notes:

- 1. Typical loading frequency = 1/T = 30 Hz
- 2. Maximum hold-down force ≈ 14 kips
- 3. Measuring dynamic pavement deflections due to F_d
- 4. Measurements accuracy approx. 0.05 mils while moving

TPAD Rolling Sensor

Arrangement of Three TPAD Rolling Sensors

RDD Portion of TPAD

3. Testbed at TxDOT Flight Services Facility

TPAD at TxDOT Flight Services Facility in Austin

Stationary and Continuous Deflections

Continuous RDD Deflection Profiles at 0.5 and 2 mph

Average Mid-Slab Deflection Comparison at 0.5 and 2 mph

Deflections Associated with Sensors around Poor Load Transfer Joint

Locations of Sensors as They Traverse a Joint

Deflection Patterns Associated with Each Sensor Traversing a Joint

Expanded FS Deflection Profile

4. Concluding Remarks

- New, multi-function pavement profiling system was developed with TxDOT funding.
- Development was a joint effort (TxDOT, CTR and TTI).
- New system is called the TPAD (Total Pavement Acceptance Device).

4. Concluding Remarks – con'd

- The RDD function of the TPAD involves three rolling sensors and permits measuring continuous deflection profiles at 2 to 3 mph.
- Rolling deflections of mid-slab areas are very similar to stationary deflections.
- Deflection underestimations occur at joints because of averaging during data processing.
- The front sensor can be used effectively to identify joints with low load transfer.

Acknowledgements

- Funding from TxDOT Research Project 0-6005-01 and implementation program, 5-6005-01, are greatly appreciated.
- Help from Elmo Christensen at IVI, Richard Hayes and Mike Lewis at the Center for Electromechanics, and Cecil Hoffpauir and Andrew Valentine of CTR are greatly appreciated.

Thank You

Questions?